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Abstract

This paper presents time dynamic numerical models for discrete track electrodynamic suspended
(EDS) magnetic levitation (maglev). In contrast to typical simulation models, we base our equations
on precise derivations from Maxwell’s equations, and provide an explicit bound on the error that arise
from the dimension reduction to an ordinary differential equation (ODE) in terms of the numerical error.
The end effect is accounted for by resetting the state, and the source magnetic field is incorporated in
spline interpolation tables for fast numerical evaluation. From this ODE, we derive a lumped parameter
model, clearly stating the underlying assumptions, and show the similarity with the thin sheet high speed
approximation model for continuous track EDS maglev. We also demonstrate the inherent inaccuracy in
the lumped parameter model from comparison with the numerical model.
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1 Introduction
This paper presents numerical models for electrodynamic suspended (EDS) magnetic levitation (maglev),
where a repulsive levitation force is created between a moving magnetic source and currents induced in a con-
ductive guideway. We further limit the presentation to discrete tracks, which employs structured conductors
as shown in Figure 1, and will not cover continuous sheet tracks nor electromagnetic suspensions.
EDS has intricate dynamics, with modes of the linearization that are easily perturb across the imaginary

axis under approximations. It is therefore essential to maintain precision in dynamic currents and forces in
the simulation models. For a maglev vehicle with 6DOF and multiple reference frames, this is especially
important since the 3D electromagnetic geometry creates complex dynamics with numerous terms that are
difficult for the designer to keep track of. In addition, the low dissipation in EDS gives rise to periodic
phenomena like limitcycles and bifurcations that are undetected by simplified models. For these reasons, it
is imperative to have a precise, efficient simulation environment to evaluate different designs.
Multiphysics based, 3D, time dynamic FEM simulations are inappropriate, mainly due to the large com-

putational expense of moving objects explained in [1]. This paper serve to fill this lack of computational
efficient simulation models for EDS maglev, and is based on the Infinite Track Model (ITM) derived in [1].
A comprehensive literary review is also included in [1].
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Figure 1: Examples of discrete track systems. Window framed track (left) and ladder track (right) with
single-sided Halbach array as source.

1.1 Motivation

Discrete track models are typically based on approximations with little regard to coherence with Maxwell’s
equations [1], and most of these models utilizes constant propulsion speed and constant levitation height and
are therefore not dynamic. Those models that are time dynamic tend to be rudimentary with fixed damping
and spring constants like [2].
Maglev dynamics have traditionally been modelled using rotating electric machine theory (REMT) utilizing

inductance for flux interactions computed from filament current considerations; forces are computed as the
gradient of mutual inductances. For rotating machinery there is no end effect, and only a finite number
of currents in the dynamic model suffice. Maglev, however, is linear machinery, and by employing a finite
number of filament conductors, the vehicle “runs out of track” after a certain time. To evaluate the stability of
the resonant frequencies (typically around 1-3 Hz), the models must incorporate excessively many conductors
to capture the growth or decay of the oscillations. Therefore, REMT models have limited use, especially for
densely spaced tracks. In addition, some mean must be provided to account for the eddy currents that might
seem insignificant from a power loss perspective, but are crucial for the dynamics since they damp oscillatory
motion [3],[4].
Early numerical models for continuous track EDS [5] utilized GREMT, and were used to investigate

the rigid vehicle dynamics under perturbations such as wind gusts and guideway irregularities, with little
emphasis on the dynamic precision of the magnetic forces that were computed from the inductance between
the magnetic source and the sheet track–coined “impedance modelling” in [6]1 .

1 See [1] for more references on impedance modelling.
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To adapt this model to discrete tracks, it is necessary to include the individual track currents as states as
done in [7] to evaluate the sidewall mounted null-flux system for levitation, guidance and propulsion [8], that
is a pre-runner to the present MLX series of vehicles at the Yamanashi test track in Japan (RTRI).
An improved version of this REMT model is provided in [9],[10],[11]. The authors compute the inductances

from 2D Fourier series expansions of the source, increasing the force accuracy relative to inductances computed
from filament current sources, allowing sufficient interspace to include the end effect. The inductances are
then incorporated into interpolation tables for fast numerical evaluation. However, the authors are unclear
concerning the implementation of the tables, which are functions of all the degrees of motion to retain dynamic
correctness.
Contrary to [11], [12] provides a model incorporating eddy losses in the cryostat shielding plates to deter-

mine the damping of the MLX series of vehicles (RTRI), but is vague concerning the inductance computations.
Another dynamic model on the MLX series of vehicles is [13], which utilizes stiffness and damping coefficients
as functions of several parameters. However, besides ignoring end effect, the authors make the typical error
of forgetting to include heave velocity in the stiffness and damping models, which is vital for correct dynamic
behavior [4].
In [14], 25 years of maglev research pertaining to factors that influence dynamic stability is summarized,

and the authors conclude with the need for numerical simulation models capable of screening designs. To,
bridge this gap, we propose our Periodic Track Model (PTM), and to our knowledge, this is the first time
there is a systematic approach to retain dynamic correctness for discrete track EDS in a dynamic simulation
model. In addition, we provide a solution to “running out of track” particularly important for densely spaced
tracks.
Lumped parameter models (LPMs) were used in the infancy of maglev technology as the semiquantitative

calculations in [15]. Due to the simplicity of such models, lumped track inductance and resistance were also
utilized in [16] and [17] with little experimental corroboration. Lately, LPMs have been applied in [18] to
model the densely spaced, discrete track maglev system labeled Inductrack. However, little has been done to
unify LPM models, and even fewer papers have clarified their limitations.
We clearly state the underlying assumptions of the LPM’s, and explain their limitations relative to more

accurate models. But despite their inaccuracies LPMs provide useful concept for building intuition.

2 Our contribution
We investigate simulation models for discrete track EDS under quasistatic magnetic conditions restricted to
magnetic sources with low conductivity2. The methods employed provide a general framework for all discrete
tracks geometries like single loop, double loop, null-flux or ladder track composed of stranded conductors (litz
wire) or solid conductors with linear conducting material and a spatial periodic geometry in the propulsion
direction with small deviations in electric properties. Our modelling approach can be generalized to 6DOF,
and the analysis is applicable to all linear machinery under similar assumptions.
Based on the infinite track model (ITM) presented in [1], we derive a periodic track model (PTM) for

numerical simulation preserving the dynamic and static properties of the ITM with a predesignated bound
on the deviation error that can be made arbitrarily small.
The purpose of the PTM is to maintain the dynamic accuracy of the ITM with minimal computational

efforts. This requires a careful system reduction since maglev dynamics have modes of the linearization that
are easily perturbed across the imaginary axis under approximations, and great care must be exercised to
assure that the lower dimensional PTM retain the properties of the ITM. The approach outlined here can be
extended to 6DOF vehicle dynamics with minor modifications.
The PTM has been implemented in the Simulink/MatlabTM environment in C-code with 2DOF, allowing

dynamic propulsion and disturbance force inputs, and is intended for dynamic design verification of forces
and currents. The implementation of the PTM is prepared for actuator coils for active heave control. This
model implementation has been used to validate the ITM model against the rotating wheel experiment to
General Atomics of San Diego, which is reported in [19]. The Simulink environment provides flexibility in
constructing complex models from simple sub-blocks, and the PTM provides the magnetic interaction sub-
block as the fundamental part of larger models as for instance a maglev vehicle with secondary suspension
with force interaction from multiple boogies with several PTM sub-blocks.

2We allow for an auxilary control current in high conductivity material in the source field.
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Subsequently, we present a lumped parameter model (LPM), neglecting the end effect of the track and the
source magnetic field that provides simple equations for baseline design with less accuracy than the ITM.
Although the essential heave dynamics can be retained in the LPM by time-scale analysis, we only present
a static force LPM valid under constant levitation height, parameterized by a constant propulsion speed, and
have relegated the dynamics to another investigation [20].

2.1 Organization

Later in this Section notation and nomenclature is presented. The ITM is briefly explained in Section 3.1, and
is truncated to a finite set of track currents in Section 3.2 according to a given criterion for force accuracy. This
order reduction amends some conditioning of the magnetic field which is explained in Section 3.3. Thereafter,
an interpolation table is constructed from splines for fast numerical evaluation of the source magnetic field in
Section 3.4, and the necessary alterations of the ITM operators are described in Section 3.5. The PTM with
execution algorithm is presented in Section 4, and essential details of the spline fitting procedure is given in
Section 4.2. The properties of the PTM is shown in simulations in Section 4.3.
The underlying assumptions of the Lumped parameter model is precisely stated in Section 5, and the

necessary modifications of the magnetic field is performed in Section 5.1. The track equivalent resistance and
inductance are derived in Section 5.2, and finally the static forces of the PTM parametrized by propulsion
velocities are presented in 5.3. We provide a comparison between the PTM and the LPM in Section 6, and
summarize our findings in Section 7

2.2 Nomenclature and Notation

The coordinate systems are oriented as in Figure 1, with the x-axis as the horizontal or propulsion direction;
the y-axis is the vertical or levitation direction, while z is directed transverse to the track in the lateral
direction. We reserve superscripts for name labeling as Bs and iloop, and use subscript for number index-
ing like in and im+1. Calligraphic B represent magnetic flux density integrated transversely as B(x, y) ,R w/2
−w/2B(x, y, z)dz; moreover, when no ambiguity can arise, we refer to the magnetic flux density vector B as
“the magnetic field”, which is justified by the constant permeability B = µ0H. Scalar component functions
are denoted with lower indices B = (Bx,By,Bz), such that Bx , B · êx, where ‘·’ is vector (inner) product in
R3. Curly braces are used to denote bi-infinite vectors {in} , {. . . , i−2, i−1, [i0], i1, i2, . . .} = i {n} = i{n}(t),
where the square bracket identifies term number zero. The inner product between a{n} and b{n} is de-
fined as h{an} , {bn}in ,

P∞
n=−∞ anbn. Finite dimensional vectors are denoted using regular braces as

(i1, . . . , iN ) = iN (n) = iN (n)(t). We use t−m to distinguish the event at simulation time tm associated with
the time interval [tm−1, tm] as distinct from the event t+n related to the next interval [tn, tn+1].
Some quantities are explained in Appendix 9.1 and have been removed from the nomenclature given here.
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Symbol Interpretation
F = (F d, F l, 0) dynamic force between levitated object and the track
F d drag force
F l lift force
Fin propulsion force
αpar parasitic dissipation (damping) coefficient
αm mechanical damping coefficient
i, in arbitrary filament current
y distance from lower edge of array to the vertical center of the rung
yφ effective flux levitation height
yF effective force levitation height
N = 2N + 1 loop currents in the periodic track model
Γx(nD) infinite dimensional track sampling operator
ΓxN (nD) truncated track sampling operator
L self-inductance of a track loop
Mk mutual inductance between loops k loops apart
{ln} inductance vector
RT rung termination resistance
L track inductance matrix for the ITM
LN track inductance matrix for the PTM
R track resistance matrix for the ITM
RN track resistance matrix for the PTM
Bs,Bs magnetic source field
BsP ,BsP spline fit of the magnetic source field
Nλ number of conductors below a wavelength of Halbach array

3 Periodic track model for numerical simulation
This exposition is based on the derivation of the ITM in [1], but we provide a brief summary here for
completeness. Electrodynamic suspended maglev is described by a PDE labeled the (track) current equation
(1) coupled to an ODE named the (force) mechanical equation (2)-(3) determining the movement of the body.
For brevity, motion is constrained to heave (levitation) in the y-direction and propulsion dynamics in the
x-direction as indicated in Figure 1, where (x, y, z) are coordinates in the inertial frame, and (x0, y0, z0) in the
moving frame.

3.1 Infinite track model

The equations (1)-(3) represent any track configuration like ladder track, single loop, double loop, or null-flux.
However, we specialize to the ladder track, assumed infinite in both directions, described by the bi-infinite
loop current vector i {n} , {. . . , i−2, i−1, [i0], i1, i2, . . .}.
The track rung conductors are stranded (litz wire), and the filament current approximation gives rise to

the effective flux levitation height yφ , y−∆yφ, where ∆yφ is an offset from the levitation height y measured
between the center of a rung and the lower edge of the source magnetic field, whereas the effective force
levitation height yF , y0 −∆yF is measured in a similar fashion with ∆yF as offset. The horizontal increase
in the flux window ∆φ from the center of the conductor is introduced to capture the increased flux the 3D
geometry of the a litz wire loop experience compared to a filament loop as explained in [1], and is necessary
to yield correct lift and drag forces for double-sided magnetic sources Bs.
Eddy currents in conductor strands, solid conductors and surrounding material are accounted for using

power loss labeled parasitic dissipation through the parasitic drag force αparx dx/dt and the parasitic heave
damping αpary dy/dt.
The track resistance and inductance are captured by the circulant symmetric, infinite dimensional L and

R matrices, and the stationary current vector field pattern implicitly presumed by inductance modeling, is
relieved by parameterizing the matrix entries with propulsion speed.
The source magnetic field Bs integrated transversely over the track width w has component functions

Bsk(x0, y0); Fin is a propulsion force; m is the vehicle mass; g is the acceleration of gravity, and αmx dx/dt and
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αmy dy/dt are mechanical damping forces. The ITM is described by

d

dt
i {n} = −L−1Ri {n} (t) + L−1Γx∆φ {nD}Bsy(x, yφ)

dx

dt
(1)

−L−1Γx∆φ {nD}
Z

∂

∂y
Bsy(x0, yφ)dx0

dy

dt

d2x

dt2
=

1

m

­
Γx {nD}Bsy(x, yF ), i {n} (t)

®
n
− 1

m
(αparx + αmx )

dx

dt
+
1

m
F in
x (2)

d2y

dt2
= − 1

m
hΓx {nD}Bsx(x, yF ), i {n} (t)in −

1

m

¡
αpary + αmy

¢ dy
dt
+
1

m
F in
y − g, (3)

where the track sampling operator Γx {nD} exploits the spatial periodic geometry of the track in the x-
direction, and samples the magnetic field at an infinite number of positions with lattice constant D as

Γx {nD} f(x, yφ) ,
∞O

n=−∞
f(nD − x0, yφ)|x

0=x
x−D

=
n
. . . , f(−D − x0, yφ)|x

0=x
x−D ,

h
f(−x0, yφ)|x

0=x
x−D

i
, f(D − x0, yφ)|x

0=x
x−D , . . .

o
. (4)

By increasing each flux conductors window horizontally direction by ∆φ at either side, we get Γx∆φ{nD}
defined as

Γx∆φ{nD}f(x, yφ) ,
∞O

n=−∞
f(nD − x0, yφ)|x

0=x−∆φ
x−D+∆φ . (5)

Unfortunately, this model is infinite dimensional, suitable for harmonic analysis, but is inefficient for
numerical evaluation. The dimension reduction to a finite dimensional ODE creates several issue which must
be overcome.

3.2 Truncating the ITM to a periodic track

The force between the magnetic source Bs and the track is determined arbitrary precise by including suffi-
ciently many track loops in front and rear of the levitated vehicle. For each time instant, given a maximum
force error �, there is a minimum number of track loops NF which will provide the required accuracy, or
more precise

∀�, ∃NF N > NF ⇒ |F−FN |l1 ≤
X

|n|>N/2
|in × Bs| < �, (6)

here FN is the force from the NF = 2NF + 1 conductors with the largest partial force, whereas F is the
force from all conductors, and |{an}|l1 =

P∞
n=−∞ |an|. This force continuity criterion guarantees a similar

dynamic behavior between the ITM and the truncated PTM if � is sufficiently small.
There are complications however, since the moving vehicle quickly runs away from the N stationary track

conductors. To circumvent this, we “recycle” the track from the rear to the front, similar to a tracked vehicle,
after discharging the current i0 as shown in Figure 2.
The spatial periodic geometry makes the track shift invariant in the x-direction with D as the wavelength

of the track, which is the distance between the horizontal center of each rung for the ladder track in Figure
1. A track with NF track conductors as “holders” for NF track currents in has the following propulsion
algorithm to circumvent running out of track: After the levitated object has moved the distance x(t−1 ) = D in
the time interval [t0, t1], all currents are propagated one conductor backwards; the last current i1 is circulated
from the rear to the discharge position i0, and i0 is propagated to the foremost current iN , as shown in Figure
2. Simultaneously at t1, the distance traveled is set to zero x(t+1 ) = 0, and the interval number counter mx

is incremented. In this manner, there has not been any relative movement between the levitated vehicle and
the currents. The only difference between t−1 and t+1 is the removed current i1(t

−
1 ) and the inserted current

iN (t+1 ). The process is repeated after the vehicle has moved another distance x(t
−
2 ) = D.

If the rearmost current i1 were discharged instantaneously at t = tm, we would get an ODE dz/dt = f(z)
with discontinuous right hand side in the sense of Filipov [21], and the equations would be difficult to solve
numerically as f(z(tm)) fails to be Lipschitz continuos. Instead, we use a discharge coefficient α such that
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Figure 2: Periodic track model with the corresponding track current windows for the source W J , force WF

and track W .

di0/dt = −αdx/dt i0, and reduce i0 to less than the numerical accuracy in the interval [tm, tm+1]. Thus, the
only source of force error is the removed rearmost current i1(t

−
1 ) which is kept small by fixing NF sufficiently

large in accordance with (6).
The magnetic source window W J , as seen in Figure 2, contains the N J track conductors that are directly

under the source current region Ls at xD = 0 plus two more conductors to allow for the movement D. The
force window WF with NF = 2NF +1 conductors determined by (6) is not much wider than W J as diffusion
and dissipation quickly weakens the currents in outside the magnetic source window as shown in Figure 8.
From the narrowness of the force window WF three issues arises. First, the currents just outside WF are

significant relative to numerical accuracy requiring a large discharge coefficient α, making a stiff3 ODE that
is unnecessary computationally demanding. Secondly, we only get a truncated loop current time profile out
of the model since the currents are discharged. Thirdly, the slowly decaying magnetic far fields provides a
significant excitation far out to the sides as explained in Section 3.3. For these three reasons we extend the
number of conductors to N = 2N + 1 labeled the track window W , so that the PTM’s current state is

iN (n, t) = iN (n) , (i1, ..., iN ) , (7)

as shown in Figure 2.
Due to the resetting of distance travelled x(t) at time instances t1, t2, . . . , tm, . . ., the PTM employs xD

which is the distance traveled modulus D

xD , (x)modD, 0 ≤ xD(t) ≤ D
x = xD +mxD,

(8)

where mx is the interval number. Notice that we define dxD/dt , d/dt(xD + mxD) to avoid continuity
problems, and that dxD/dt ≡ dx/dt.

3.3 Modification of the source magnetic field for the periodic track - attenuating
the tails

The source magnetic field Bs(p0) is determined by Poisson’s Equation ∆As= −µ0Js, an elliptic PDE with
far fields that decay very slowly. Consequently, the tails of Bsx(x0, y0), and Bsy(x0, y0) are significant far out
to the sides of the source Js. For instance, if the horizontal termination of the a Halbach array as shown
in Figure 1 has magnetization in the vertical (êy) direction only, we employ Gauss Law for magnetic fieldsH
V
Bs · dS = 0 with a closed surface V extending far out to the sides and containing the array termination,

to observe that
0 < |Bs

x(x
0, y0, z0)| << ¯̄Bs

y(x
0, y0, z0)

¯̄
, x0 >> y0 + z0, (9)

3A “stiff” ODE dz/dt = f(z), has a large separation between a fast time-scale and a slow time-scale such that the eigenvalues
of the linearization λn(∇f(z)) have very different magnitudes, or |λmin(∇f(z))| ¿ |λmax(∇f(z))| .
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so that Bs
y is significant even far out to the sides. This has no influence on force continuity (6), but creates

tails of in that are truncated without converging to zero. Hence, when the currents in are propagated
backwards, the removed current i1 is significant and the solver attempts to reduce the numerical error by
shortening the time step size requiring more computation time. To prevent this, we attenuate the tails of
Bsk(x0, y0) as shown in Figure 3 starting at the ends of the force window WF , so that the field is sufficiently
attenuated at the termination of the track window W .However, we must ensure that the attenuated field
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Figure 3: Attenuating function a(x0) shown together with Bs
x(x

0, y0 = 34mm) and Bs
y(x

0, y0 = 34mm) for the
one sided array. See Appendix 9.1 for details.

Bcut(x0, y0, z0) = Bs(x0, y0, z0)a(x0) is sufficiently smooth to avoid large excursions in the partial derivatives
of Bcut

k at the onset of the cut. The multiplicative attenuation function a(x0) (shown in Figure 3) achieve
this by a Gaussian e−x

2/2σ2producing a smooth transition at the onset of the cut as

a(x0) =

⎧⎪⎨⎪⎩
e−

(x0+µ)2
2σ2 , x0 ≤ −µ
1 −µ < x0 < µ

e−
(x0−µ)2
2σ2 , x0 ≥ µ,

(10)

where µ =WF /2, and the parameter σ (referred to as “standard deviation” in statistics ) is chosen to make
a(±µ) sufficiently small.

3.4 Magnetic field for numerical evaluation - spline fit

Solving the ITM numerically requires evaluating the source magnetic field Bsk(x0, y0) efficiently which elimi-
nates solving Poisson’s equation ∆As= −µ0Js at each time step. An analytic solution to Poisson’s equation
is usually attainable for source currents Js with simple geometric shapes such as current sheets [22],[23].
However, these solutions contain transcendental functions, which number increase with the source complex-
ity, and evaluate in a FPU roughly 100 times slower than addition and multiplication. It is therefore not
recommended to employ analytical solutions in real time.
To overcome this computational bottleneck, we apply spline approximations BsPx and BsPy of the transversely

integrated magnetic source field Bsx and Bsy, respectively. With only 2DOF (x0, y0), the magnetic field from a
Halbach array is almost separable such that Bsk(x0, y0) ' fk(x

0)gk(y0) as shown in Figure 4.The approximate
separability allows performing the spline fit on a rectangular grid determined by the break point sequences

(ξi)K+1 , ξ1, ξ2, ξ3, . . . , ξK+1 (11)

(ζi)J+1 , ζ1, ζ2, ζ3, . . . , ζJ+1, (12)
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Figure 4: Transversely integrated magnetic field Bsx =
R w/2
−w/2B

s
x(x, y, z)dz for the single sided array shown in

Figure 8 with technical details in Appendix 9.1. Notice the high spatial frequency components close to the
magnetic source.

in the x- and y-direction respectively and nevertheless have reasonably good control of the approximation
error

¯̄Bsk − BsPk ¯̄
.

For efficient spline evaluation, we choose tensor product splines in the piecewise polynomial form (pp-
form). Tensor product splines also simplifies the code used to create and evaluate a 2D spline by reapplying
a 1D spline procedure [24], which reduces software development time. The disadvantage of tensor product
splines is that the breakpoint sequences (ξi) and (ζi) must be very carefully adapted to Bsk(x0, y0) to create a
small approximation error. Therefore, the fit of BsPx and BsPy are made on separate grids. In conclusion, the
numerical implementation of the PTM requires spline fits of BsPx , BsPy and ∂BsPy /∂y with further details in
Section 4.2.
For a general magnetic source field Bs the component functions Bsk(x0, y0) : R2 → R are not necessarily

separable. In addition, for a 6DOF maglev vehicle with sway z (sideways) movement in addition to the
rotations: roll ψ (around the propulsion or x-axis), pitch ϕ (around lateral or z-axis) and yaw θ (around the
vertical y-axis), yield flux component functions Bs

k(x
0, y0, z0, ψ0, ϕ0, θ0) of six variables Bs

k : R6 → R. Here,
approximate separability Bs

k '
Q

n fn(xn) is seldom the case, and in order to obtain acceptable approximation
errors

¯̄
Bs
k −BsP

k

¯̄
, it is necessary to segment the six-dimensional domain based on the values of Bs

k
4 , and it

is not feasible to use a rectangular grid for such problems.

3.5 Periodic track operators - modifications from ITM

For the ladder track, the truncation of the track into N conductors diminish the resistive dissipation, and
the currents persists longer at the ends due to the missing parallel resistance of the removed loops. To avoid
changing the track dissipation, the leftmost and the rightmost rung resistance Rr is set to RT

RT , Rr|| (2Rb +Rr|| (2Rb +Rr|| (2Rb +Rr|| · · · ))) , (13)

which is the equivalent track resistance to one side of an infinite track. This modification provides the same
equivalent track resistance in both directions for all rungs, and by defining R0 = RT +Rr+2Rb, the N -by-N
track resistance matrix RN is

RN =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

R0 −Rr . . . 0 0

−Rr 2 (Rr +Rb)
. . . 0 0

...
...

. . .
...

...

0 0
. . . 2 (Rr +Rb) −Rr

0 0 . . . −Rr R0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (14)

4A similar procedure is performeed in computer graphics to scan a 3D graphic object using polynomial basis functions.
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where N , 2N + 1.
The finite dimensional counter part of convolution operators [1] is circulant symmetric matrices representing

circular convolution. However, circulant convolution produces magnetic coupling from the front to the rear
of the track removing the end effect, which is undesirable. Instead, we truncated the inductive coupling at
each end of the track creating Toeplitz matrices [25]. With the mentioned modifications, the N -by-N track
inductance matrix LN becomes

LN ,

⎡⎢⎢⎢⎢⎢⎣
L M1 . . . MN−2 MN−1
M1 L . . . MN−3 MN−2
...

...
. . .

...
...

MN−2 MN−3 . . . L M1

MN−1 MN−2 . . . M1 L

⎤⎥⎥⎥⎥⎥⎦ , (15)

where L is the loop self inductance, and Mn is the mutual inductance between two loops separated by n− 1
loops [1].
Since the track is DN = D (2N + 1) long, the track sampling operator ΓxND(nD) for the periodic track

model is a truncated version of the bi-infinite Γx {nD} in (4) as

ΓxN (nD)f(x, yφ) ,
NO

n=−N
f(nD − x, yφ)|x

0=x
x−D ,

which is simply N translations in the x-direction with lattice constant D of the function f(x0, yφ)|x
0=x

x−D . The
Γx∆φN (nD) operator is by analogy a truncation of the Γ

x
∆φ {nD} operator (5).

4 Periodic track model - Dynamic equations for numerical imple-
mentation

With the modifications in foregoing sections, we have tailored the ITM (1)-(3) according to the force continuity
criterion (6) for numerical implementation, and have obtained the periodic track model (PTM)

d

dt
i0 = −αdxD/dt i0 (16)

d

dt
iN (n) = −L−1N RN iN (n) + L−1N Γx∆φN (nD)BsPy (xD, yφ)

dxD
dt

(17)

−L−1N Γx∆φN (nD)
Z

∂

∂y
BsPy (x0, yφ)dx0

dy

dt

d2xD
dt2

=
1

m

N−(N−NF )P
n=N−NF

ΓxN (nD)BsPy (xD, yF )iN (n)− 1

m
(αparx + αmx )

dx

dt
+
1

m
F in
x (18)

d2y

dt2
= − 1

m

N−(N−NF )P
n=N−NF

ΓxN (nD)BsPx (xD, yF )iN (n)− 1

m

¡
αpary + αmy

¢ dy
dt
+
1

m
F in
y − g, (19)

where the inner product h{an} , {bn}in in (2) and (3) are replaced by a finite sum over the force window. The
Equations (16)-(19) are integrated according to the following algorithm:
Sequential Execution Algorithm of the PTM (16)-(19)

1. Initiate
0 ≤ x(t0) < D
mx(t0) = 0

(20)

2. Run
0 < xD(t) < D, t ∈ [tm−1, tm]
mx = m

(21)
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3. Stop
xD(t

−
m) = D (22)

4. Reset
xD(t

+
m) = 0

mx(t
+
m) = mx(t

−
m) + 1

iN (n, t+m) = iN (n+ 1, t−m), n ∈ {0, . . . ,N − 1}
iN (N , t+m) = i0(t

−
m)

(23)

5. Goto 2

The output current mapping from the PTM currents iN (n, t) to the track currents itrack(k, t), where k is
between 1 and max(N ,mx) is

itrack(k, t) = iN (l, t), l = (k −mx/N )modN . (24)

The PTM (16)-(19) must be integrated with a variable time step solver capable of detecting the zero
crossing xD(t

−
m) = D in the stop condition down to numerical accuracy of the FPU. Otherwise, there are

force and current discontinuities from the reset other than the removed current i1(t
−
1 ), which error will

propagate over time.
The PTM can also be integrated at fixed propulsion speeds vx by fixing xD = (vxt)modD and ignoring

(18). Similarly, levitation height can also be fixed y = yconst by disregarding (19). However disregarding (18)
and/or (19) yields a solution that is not on the solution manifold of the equations (1)-(3), as the full ITM
does not have a critical point corresponding to constant levitation height yconst unless Fin is a very special
periodic function. Drawing hastily conclusions from operating the model with reduced mechanical dynamics
can lead to strange results, as the unstable propulsion dynamics found in [26] as criticized by [15].

4.1 Power balance and model accuracy

The magnetic energy EJ of the track currents iN (n) is

EJ =
1

2
iTN (n)LN iTN (n) . (25)

Similarly, the track dissipation power PRN is a finite sum incorporating the termination rung resistance RT

(13) as

PRN = RT i
2
1 +

Ã NX
n=2

2Rbi
2
n + Rr(in − in−1)2

!
+ RT i

2
N . (26)

Ignoring the mechanical damping coefficient αm = (αmx , α
m
y , 0) and the parasitic dissipation coefficient α

par =
(αparx , αpary , 0) yields a magnetic force

F =
N−(N−NF )P
n=N−NF

iN (n) êz × ΓxN (nD)BsP (xD, yF ). (27)

Together, (26) and (27) provide a measure to check the integration accuracy of the model by analyzing the
electromagnetic power balance averaged over the time interval [0, T ] as

1

T

p(T )Z
p(0)

F dp− 1

T

Z T

0

PRNdt = ε(T ) + �i, (28)

where �i is a numerical error, and ε(T ) = EJ(T )−EJ(0). If we evaluate (28) on a periodic orbit5 such that
(iN (n) (t), y(t)) = (iN (n) (t + T ), y(t+ T )), we have that ε(T ) = 0. Thus, the numerical error �i in (28) is
available explicit.

5Here, we must allow all cyclic permutations of i{n} to be equivalent to have periodic motion when for instance the levitated
object has moved the distance between two track rungs D such that T = D/vx.
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The error � in the force continuity criterion (6) is upper bounded based on the force discontinuity at
reset |FNF (t−m)−FNF (t+m)| = |fNF+1(t

−
m)| as explained in Appendix 9.2. By defining the force error bound

constant

ς , 2
µ

1

1− e−D(k+1/vxτ)
− e−D(k+1/vxτ)

¶
, (29)

the bound on the force error becomes

|F−FNF |l1 ≤ � < ζfNF (t−m). (30)

and provides an upper bound on the force error between the ITM and the PTM in terms of the observed
force discontinuity in the PTM.

4.2 Spline fit of the magnetic field

There are several practical issues pertaining to the spline fits that must be addressed in order to assure the
force continuity (6).
First, the fit of BsPx and BsPy are made on individual grids to have better control of the approximation error¯̄Bsk − BsPk ¯̄

, as mentioned in Section 3.4, to prevent the error becoming excessively large.

Second, in order to avoid a derivative where
R Y
0
(∂/∂yBsPy )dy 6= BsPy (Y ) − BsPy (0), ∂/∂yBsPy is evalu-

ated by differentiating the spline BsPy . This is performed off-line to save computation time. Assuring thatR Y
0
(∂/∂yBsPy )dy = BsPy (Y )− BsPy (0) is particularly important for correct heave dynamics in (17)-(19).

Third, the evaluation of the integral
R −x
−D−x ∂/∂yBsPy (x0, yφ)dx0 in (17), depends on the location of the in-

terval [−D − x,−x] in the breakpoint sequence (ξi)K+1, and must be performed on-line. This choice of imple-
mentation places an even greater restriction on the approximation error ∂/∂yBsy(y)−∂/∂yBsPy (y) which must

be evenly distributed around zero to prevent the error from accumulating in the integral
R−x
−D−x ∂/∂yBsPy (x0, yφ)dx0.

As we use tensor product splines, where multiple dimensions are created by repeated application of a one
dimensional spline fit [24], it is sufficient with one dimensional theory. The pp-form spline s(x) used for
evaluation on x ∈ £ξ1, ξK+1¤ subdivided into K intervals and separated by the break point sequence (ξi)K+1
(11) has the representation

s(x) =
KP
j=1

Ωjpj(x), Ωj =

½
1, x ∈ £ξj , ξj+1¤
0 elsewhere,

(31)

where Ωj is the characteristic function of the j-th interval. If ∂/∂yBsPy should be once continuous differen-
tiable, we must at least employ fourth order splines, hence pj(x) is a third order polynomial; whence the
spline s(x) becomes

s(x) =
KX
j=1

Ωj
4P

i=1
cij
¡
x− ξj

¢4−i
, (32)

and its derivative s0(x) is

s0(x) =
KX
j=1

Ωj
3P

i=1
cij (4− i)

¡
x− ξj

¢3−i
. (33)

Integration over the interval [a, b], where ξm ≤ a ≤ ξm+1 and ξm+n ≤ b ≤ ξm+n+1 becomes

bZ
a

s(x)dx =
4X
i=1

∙
cim
(5− i)

³¡
ξm+1 − ξm

¢5−i − (a− ξm)
5−i´ (34)

+

⎛⎝m+n−1X
j=m+1

cij
(5− i)

¡
ξj+1 − ξj

¢5−i⎞⎠+ ci(m+n)
(5− i)

¡
b− ξm+n

¢5−i⎤⎦ .
Two dimensional splines are created by first fitting K curves in the x-direction with the break point

sequence (ξi)K+1, thereafter we treat the coefficients in these splines as points cijm on lines in the y-direction
with the break point sequence (ζi)J+1 , where the one dimensional procedure can be repeated for these
coefficient lines [24].
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4.2.1 Spline fitting procedure

It is implicitly assumed that the spline fit is performed on the magnetic field with attenuated tails Bcut(x0, y0, z0)
as explained in Section 3.3, and hereafter Bcut = Bs for notational convenience. The attenuated tails of Bs fa-
vorably commensurate with the requirement of zero boundary derivative of the splines, so it is not required to
produce additional boundary derivatives6. In other words, a set of points S of the magnetic field B(x0, y0, z0)
is the data for the spline fit, and we assume that any measurement noise has been filtered out from S.
The lateral integration of the magnetic field components Bs

x and B
s
y into Bsx and Bsy, is performed numeri-

cally using any quadrature formula as long as the approximation error � is kept small. The choice of method
depends on the number of lateral data points and their spacing. If the data points are taken on a uniform
grid with grid constant ∆z and Nz + 1 grid points in the z-direction, the rectangular approximation

Bsk(x, y) =
w/2Z
−w/2

Bs
k(x

0, y0, z0)dz0 = ∆z0
NX
n=1

Bs
k(x

0, y0,∆z0n) + �l, (35)

will suffice if ∆z is chosen sufficiently small to yield a small error �l.
The breakpoint sequences (ξi)K+1 and (ζi)J+1 must be carefully chosen. Inadequate breakpoint sequences

are excessively large, and slows down evaluation without reducing the approximation error compared to a
properly selected shorter sequence. If one starts with an inappropriate (ξi)K+1, the approximation error
is not necessary reduced by introducing more points–the error can just as well increase. The selection of
(ξi)K+1 and (ζi)J+1 is something of an art, and some trial and error is required. To ease our burden, we
should precondition the magnetic fields by smoothing out high spatial frequencies that are outside the region
of interest.

4.2.2 Smoothing out high spatial frequencies

The magnetic field 5-10 mm away from the magnetic source is never used for computation due to the thickness
of the rungs. This region contains high spatial frequencies as shown in Figure 4 which cause problems for the
spline fit.
To remove these frequencies, we filter Bsx and Bsy in the x direction using a non-causal finite impulse

response filter (FIR) to avoid the phase lag (distortion) of a causal filter. The filtered Bsy is shown in Figure
5 and should be compared to the unfiltered Bx in Figure 4.The filter must also have unity dc-gain to prevent

Figure 5: The transversely integrated vertical magnetic field Bsy from the Halbach array shown in Figure 8
with details in Appendix 9.1. The field Bsy was sampled on a 2 mm grid in the x-direction, and run through
the filter (36) once with Q = 20 and p = 0.9.

amplification of the magnetic field. Many choices are available, but we choose a simple filter as off-line we
6This is under the agreement that the two uttermost breakpoints on both sides in the y-direction is chosen sufficiently far

away from the region in which we whish to evaluate B(x0, y0).
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can make the window size Q arbitrary large to improve the steepness of the cut. We can also reapply the
filter for a sharper cut. The difference equation for our filter with input sequence u(n) and output sequence
y(n) is

y(n) = g

Ã
QX

m=0

pmu(n−m) +

QX
m=1

pmu(n+m)

!
(36)

g = 1−2p(aQ+1)
1−p , |p| < 1, (37)

where increasing p removes more high frequency information, and Q should be kept large for a steep cut.

4.3 Properties of the PTM

By numerically integrating the PTM (16)-(19) according to the sequential execution algorithm, we obtain
time dynamic forces F l and F d and currents iN (n) (t) that can be made arbitrary close to the forces and
current i {n} (t) of the ITM (1)-(3). By including sufficiently many track conductors ascribed by (6), the force
discontinuities from removing conductors can be made less than the solver tolerances as shown in Figure 6,
so the dynamic properties of the PTM are exactly those of the ITM.
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Figure 6: Numeric solution of the PTM displaying the lift force continuity x:
¡
F l(tn)− F l(tn−1)

¢
/F l(tn),

the drag force continuity o:
¡
F d(tn)− F d(tn−1)

¢
/F d(tn), and the normalized power continuity (28) + :¡

PRN − PF
¢
/PRN . The force continuity error � at interval switch (reset) is smaller than the largest force

increment during normal integration.

The switching intervals between the time instances {t0,t1, t3, t4, . . .} are at constant speed tm − tm−1 =
TD = D/vx apart, and generate the oscillations shown in Figure 6 from the track interspace D.
By removing all parasitic damping αpar and mechanical damping αm in (18)-(19), the PTM has increasing

heave oscillations at the natural levitation frequency ω0 =
√
2kg, k = 2π/λ [18], as shown in Figure 7.

The track currents are best viewed at constant levitation height y time-scaled by the constant propulsion
velocity vx, normalized to λ and time-reversed as i(−tλ/vx) for comparison with the magnetic fields Bx and
By as shown in Figure 8.
At constant propulsion speed and constant levitation height, the rung current in the track at any time

instant is a time sample of a single rung current in−in−1 at intervals TD = D/vx. This enables the simplified
LPM model derived in the next Section

14



0 0 .5 1 1 .5

3 9

4 0

4 1

t im e  ( s )
h

ea
v

e 
- 

y
 (

m
m

)

Figure 7: Unstable heave (levitation) in the absence of parasitic damping. F p = 1547.45N which gives an
equilibrium propulsion velocity of 17.64 m/s. Equilibrium levitation height is y = 4.00 mm. The observed
‘negative damping’ is approximately 250 N s/m.

5 Lumped parameter model - equations for baseline design
Lumped parameter models (LPM) provide simple, but less accurate, formulas for baseline design. The order
reduction is achieved by modifying the PTM through the following steps:

1. Parasitic dissipation is removed.

2. Propulsion speed is assumed constant.

3. Levitation height is fixed.

4. End effect of the track is ignored.

5. The magnetic source field is assumed periodic.

In what follows, step 3 can be relaxed by more elaborate time-scale analysis which preserves the heave
dynamics which is the subject of [20].
Typically, in rudimentary investigations of continuous track EDS maglev, the mirror magnetic field in

the track is assumed to be an exact mirror image of the primary field in order to make the mirror image
stationary in the body attached reference frame. This analysis is not applicable for discrete tracks, where the
current pattern is never independent of time (stationary) in the vehicle’s reference frame (ê0x, ê0y, ê0z) due to
the spacing of track rungs. For discrete tracks, sampling the track current at time instances equally spaced
by TD , D/vx yields a stationary image in the moving reference frame. Equivalently, on the lattice (grid)
t− TDm for integer m, the track current in conform to

in+m(t) = in(t− TDm). (38)

Equation (38) is referred to as the Space-Shift Time-Shift Equivalence (SSTSE), and enables discrete track
analysis without assuming a stationary current pattern. The SSTSE relies on constant levitation height, and
constant propulsion speed; however, there is no requirement of periodicity in the magnetic field.
We now continue making the necessary assumptions for simplifying the magnetic field.

5.1 Simplified magnetic field

Even for short Halbach arrays, the magnetic field is close to sinusoidal, as shown in Figure 8, and the quality
of this approximation improves with the number of wavelengths in the array [23]. In addition, the magnetic
field decays rapidly outside the magnetic source windowW J as seen in Figure 8. Also notice that the currents
decay quickly outside W J , and that the track currents are nearly an amplified, phase shifted ‘footprint’ of
By. Consequently, the currents outside W J contribute little to the lift force. So we shrink the track window
W in Figure 2 to a phase-shift of the magnetic source window WJ , and have ignored the track end effect:
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Figure 8: Scaled rung currents from the PTM at levitation height (y = 22mm) at different constant propulsion
speeds vx compared to the magnetic fields Bx(x, y = 22 mm) and By(x, y = 22mm). Observe the current

phase φ, arctan(vx
vt
) ∈ [0, 90) which shifts forwards with velocity. The shown length of the x-axis corresponds

to WF at φ = 45.

Assumption 1 Track currents outside the track window W are zero.

For a double Halbach array, assumed to be infinitely long, the 2D analytic expression for the magnetic flux
density is given by Halbach in [27], Equation (5). For a single array with remanent magnetic field Br, with
N bars per wavelength λ, each with a thickness d, this formula becomes

B(x0, y0) = B0e
−nky0

∞X
v=0

(êx sinnkx
0 + êy cosnkx0) (39)

B0 = Br(1− e−nkd)
sinn�π/N

nπ/N
(40)

k = 2π
λ , n = 1 + vN , (41)

where �λ/N is the length of a single magnet block, so that � = 1 if there is no spacing between the blocks. In
the survey article [28], Equation (6), Halbach points out that retaining the first harmonic in (39) is a good
approximation. The resulting magnetic field is

B(x0, y0) ≈ B0e−ky0φ [sin(kx0)êx + cos(kx0)êy] , (42)

and should be compared with the magnetic field Bs in Figure 8. Unfortunately, the 2D approximation the
formula is based on is equivalent to assuming that the array is infinitely wide. So for the approximation to hold,
we should require that the width of the Halbach arrayws is much wider than the track w, or ws/w >> 1. This
is rarely the case in maglev applications, so the coefficient B0 (40) cannot be used for computing the flux
[23]. Halbach do not provide analytic formulas for the flux over a region, since it is merely the magnitude of
the flux density in the transverse center of the array that is of interest for linear undulators.
To remedy this, we derive the coefficient B0, obtained by transverse integration of the field, from 3D field

considerations computed by FEM or analytic solution as in [23]. With this modification, (42) is a good
approximation, and we have made the assumption:

Assumption 2 The magnetic source field is infinitely long, and only the first harmonic in the field is
retained.
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Here, we have ignored the high frequency components close to the array for heights y < λ/(2N), and
neither is this approximation valid for the far field [22],[23].
Now, it suffices to consider a set of Nλ currents {i1, . . . , iNλ

} below a wavelength of Halbach array, since a
current in leavingW J in Figure 2 is replaced by the current in+Nλ

enteringW J in front, because the currents
one wavelength away are identical, or in = in+Nλ

. The mild technical assumption this relies on is:

Assumption 3 The wavelength of the source λ is divisible by the conductor spacing D, and the Halbach
array contains an integer number of wavelengths.7

We are left with Nλ track currents, so that the track operators RNλ
and LNλ

are now Nλ-by-Nλ matrices,
but we have also introduced flux coupling from rear to front (by ignoring the end effect) generating circulant
symmetric matrices as

LNλ
,

⎡⎢⎢⎢⎢⎢⎣
L M1 . . . M2 M1

M1 L . . . M3 M2

...
...

. . .
...

...
M2 M3 . . . L M1

M1 M2 . . . M1 L

⎤⎥⎥⎥⎥⎥⎦ . (43)

These matrices are the finite dimension counterpart of convolution operators like L and R which do not have
any eigenvectors [29]. The eigenvectors of finite dimensional circulant symmetric matrices form the Fourier
matrix F whose (k, l) element fk,l is given by

fk,l , 1√
Nλ

ejθkl, θ , 2π
Nλ

,

which is determined solely by the circulant symmetry, and is independent of the values of the elements in the
matrix [25]. Therefore, we are not adding artificial properties (like electrical modes) to the track by using
circular symmetric matrices like (43).
We have now gone through all the steps in the introduction of Section 5, and are left with Nλ currents

{i1, . . . , iNλ
} below a wavelength of Halbach array. We continue the reduction in Section 5.2 to a single

equivalent loop current in with scalar lumped inductive reactance Leq and lumped resistance Req replacing the
matrices LNλ and RNλ , respectively. In Section 5.3, the static force equation without the summation from
the inner product in (2) and (3) is derived. Both these reductions are facilitated by the SSTSE (38).

5.2 Lumped parameter electric equation with Leq and Req

One limitation with the LPM is that it is difficult to account for ∆φ and yet retain the simplicity of the
equations. Consequently, for double-sided sources either F l or F d is reliable when ∆φ = 0, which necessitates
two sets of equations to account for both F l and F d. Such equations can be extrapolated from the derivation
that follows, and we restrict our derivation to a single-sided source as displayed in Figure 9.
The e.m.f. around the n-th ladder track loop En in Figure 9 becomes after substituting in the periodic

e z

e y

e 'xB s (x ',y ')
D

x

y i ni n - 1

D ( n - 1 )
D n

e x

e 'z

e 'y

w

Figure 9: Schematic of the stationary frame (x, y, z) and the body fixed (moving) frame (x0, y0, z0).

7This assumption can be omitted if we use averaging instead of summation to derive the governing equations.
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magnetic field (42)

En(x, yφ) = B0Ae−kyφ
µ
− cos(kx− ψ(n))

dx

dt
+ sin(kx− ψ(n))

dy

dt

¶
, (44)

where A = 2 sin(kD2 ), and the angle ψ(n) = kD(2n− 1)/2 is fixed for given n and is ignored.
Kirchhoff’s voltage law for the n-th filament loop is

Rloopin +
X
m

lm
d

dt
in+m = En(x, yφ). (45)

Equation (45) depends on the current in the neighboring loops in+m which we replace by time shifts of a
single current in from the SSTSE in+m(t) = in(t− TDm). The e.m.f. from track flux coupling becomesX

m

lm
d

dt
in+m =

X
m

lm
d

dt
in(t− TDm). (46)

We have assumed that the heave yφ is constant so that En(x, yφ) = En(x) is a periodic function. Since
equation (45) is a linear ODE, periodicity in En implies periodicity in in; since En is sinusoidal, in is also
sinusoidal. Therefore. in(t− TDm) is a phase shift of in(t) as in(t− TDm) = e−jkDmin(t), and the voltage
contribution from inductive reactance (46) becomes⎛⎝l0 +

X
m6=n

lme
−jkDm

⎞⎠ d

dt
in(t). (47)

The summation remains purely real from the complex conjugate symmetry between indices +m and −m, so
we define the expression inside the brackets as the lumped parameter track inductance Leq

Leq , l0 + 2
∞X

m=1

lm cos kDm. (48)

Formula (48) commensurate with the derivations in [16], [5], [17], and is a constant if the wavelength of the
Halbach array λ is divisible by the rung spacing D, which we have assumed in Assumption 3.

i n - 1 i n i n + 1

R b R b R b

R bR bR b

R rR rR rR r

Figure 10: Schematic of the resistance network for a ladder track.

From Figure (10) we derive the loop resistance for the ladder track

Rloop = 2Rbin +Rr (2in − in−1 − in+1) , (49)

which we rewrite using the SSTSE (38) as above, and define the loop resistance as the lumped parameter
track resistance Req

Req = 2 (Rb +Rr(1− cos kD)) . (50)

The track electric equation is now simply Faraday’s Law (45) for the equivalent track circuit with only one
track current in

Reqin + Leq
din
dt

= En. (51)
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Having justified the lumped parameter model with only one track coil, we have replaced the PDE for the
track current (1) with a simple R-L circuit as shown in Figure (11) which represents Faraday’s Law (51).
Notice that Leq (48) depends on the mean spacing of track rungs D through cos kDm, and on the wave-

lengths in the Halbach array through k = 2π/λ. So Leq is not determined solely by the track, but is also
affected by the source magnetic field. Equation (48) is also the sum of a purely oscillating sequence {cos kDm}
and a slowly decaying sequence {ln}, hence the product lm cos kDm settles very slowly, and an appropriate
numerical approximation of Leq must retain sufficiently many terms (103) in the infinite sum in (48).

v x

i n

P e r io d ic  H a l b a c h  a r r a y

in
L e q

R e q

x

y

E n

λ

Figure 11: Equivalent R-L circuit for the lumped parameter track equation (51).

Further similarities between (1) and (51) are revealed by solving the later equation with the e.m.f. from a
single-sided source (44), at constant propulsion velocity dx/dt = vx, and constant levitation height yφ = y.
By defining the transition speed vt as

vt ,
Req

kLeq
, (52)

and the phase angle φ
φ , arctan(vx

vt
) ∈ [0, π2 ), (53)

the solution to (51) with zero initial condition is

in(t) =
B0
√
2 sin(kD)e−kyφvt

Req

p
γ(φ)Ã

cos(kvxt− φ)− 1p
γ(φ)

e
−Req
Leq

t

!
, (54)

where the factors γ(φ) and ζ(φ) are defined as

γ(φ) , 1

1 +

µ
vt
vx

¶2 = 1

2
(1− cos 2φ) (55)

ζ(φ) ,

vt
vx

1 +

µ
vt
vx

¶2 = 1

2
sin 2φ. (56)

Notice that φ is the angle between the voltage En and the current in in the one loop equivalent circuit in
Figure 11. More importantly, φ/2 is the phase lag of the mirror magnetic field in the track from
the source magnetic field8 as indicated in Figure 8. In the next Section we will see that vt is the speed
where the lift force equals the drag force under constant levitation height.

8This convention is with opposite directed y-axis (heave) for the source and the mirror magnetic field accounting for the
minus sign in Lenz’ Law.
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5.3 Lumped parameter static forces replacing the mechanical equation

It remains to reduce the sum in the mechanical equations (2) and (3) to an expression of the same single
current in. Under the assumptions of constant propulsion speed x = vxt, and constant levitation height yφ,
the total force F from Nλ conductors under a wavelength of the Halbach array equals

F =

Nλ−1X
m=0

in+m(t)êz × B(mD − vxt, yF ), (57)

where we have substituted the vertical position of the n-th loop in the moving frame x0 resolved in the
stationary frame x

0
= mD − x according to Figure 9. By ignoring the transient part e−tReq/Leq in (54), and

using the SSTSE for the sinusoidal current, the force becomes

F =
B20 sin(kD2 )e−k(yφ+yF )

kLeq
γ(φ)

⎛⎝Nλ−1X
n=0

cos(kvxt− kDn− φ)

[sin(kvxt− kDn)êx + cos(kvxt− k)êy]
¢
. (58)

Performing the summation over a wavelength, and defining the constant G

G (yφ + yF ) =
B20 sin(kD2 )Nλe−k(yφ+yF )

kLeq
, (59)

the lift force F l and the drag force F d per wavelength of array become

F l =
G

2
[(1− cos 2φ) + � sin 2kvxt] (60)

F d = −G
2
[sin 2φ+ � sin 2kvxt] . (61)

The small term � = sin2 2π(λ − NλD) is zero if the wavelength λ of the Halbach array is divisible by the
conductor spacing D as in Assumption 3. If we average the force hF (t)iλ/vx , � will disappear when vx is
sufficiently high regardless of Assumption 3, and the corresponding ripple will not appear in the lift- and drag
forces.
Neglecting �, equation (60) and (61) are identical to the force expressions for continuous sheet track in

[15]9 , where v0 = vt, F∞ = G, which is valid for an “infinitesimal thin, perfectly conducting track of finite
conductivity per square”, the thin sheet - high speed limit, as clarified in [30]. It should be explicitly noted
that these expressions neglect the skin effect and are therefore overly optimistic at high speeds. To include
the skinning effect, we must add a term proportional to vx/vt in the drag force, set to k2d2vx/6vt in [31] for
continuous tracks with one-sided sources (normal flux).

6 Comparison between PTM and LPM
A comparison of the forces from the PTM and LPM is shown in Figure 12. Even though the shape of the forces
versus speed are astonishingly similar (mean square error less than 1%), the parameters predicted by the LPM
deviates form the best fit of the parameters k, G, vt from the PTM. For the LPM these parameters are (with
the best fit PTM parameters in brackets): k = 14.32 rad/s (15.93 rad/s), G = 24 225 (23 922), and vt = 3.98
s, (4.23 s at y = 20 mm to 4.00 s at y = 80 mm). This might lead us to believe that the LPM can predict
forces sufficiently accurate for the final design. This is incorrect, and a caution is appropriate concerning
using lumped parameters and ignoring the end effect as this leads to several “judgement coefficients” which
are impossible to determine a priori, reducing the prediction power of the LPM
For instance, the coefficient B0 in (42) is determined from the peaks of Bx and By shown with correct ratio

in Figure 8. However, there are several peaks of different magnitude, and since both F l and F d contain the
factor B20, they are very sensitive to incorrectly chosen B0. Knowing the accurate answer from the PTM, we

9Unfortunately, the authors calls this the “low-velocity limit” which is missleading. The ambiguity arises from the two spatial
quantities for continuous tracks: d —track thickness— and λ, and their magnitude relative to vx.
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Figure 12: Comparison of PTM and LPM at yF = 20, 30, 80 mm, ∆yφ = 6 mm, ∆φ = 0 for the single sided
Halbach array shown in Figure 8 and described in Appendix 9.1.

have chosen B0 according to the lowest of the peaks of By(x, y = 20mm) in Figure 8. Still, the LPM forces
are too high, and if we had used the average peak height of By(x, y = 20mm), the forces had been 70% in
excess. Therefore the LPM is less accurate in force magnitude predictions than shown here10 , and without
guidance of an exact answer when choosing the “judgement coefficient” B0, the force magnitude of the LPM
have an inaccuracy of at least ±30%. However, vt in (52) is more accurate, but the wave number k provided
by the fundamental wavelength λ, is 10% too low due to the end effect, which causes incorrect dependence
on the levitation height y.

7 Conclusion
We have derived numerical equations for discrete track electrodynamically suspended (EDS) maglev from
the infinite track model (ITM) presented in [1], and have provided an explicit bound on the deviation of
the numerical equations, named the periodic track model (PTM), relative to the ITM. The PTM employs
resetting of the state, and incorporates spline approximations of the conditioned source magnetic field.
Through simulations we have demonstrated that in the absence of damping from eddy currents, the ITM

has unstable heave dynamics, and the rung currents at constant speed and levitation height resembles velocity
scaled, phase shifted versions of the current inducing magnetic field.
The main benefits of the PTM are:

• Arbitrary accurate dynamic precision in the computed forces and currents, achieved through a careful
derivation without unjustified approximations.

• The model accounts for field coupling between track conductors, and provides a mean to account for
the end effect without running out of track.

• The source magnetic field is derived from the precise geometry of the source currents, and no assumptions
are made on the source currents.

• The PTM provides a dynamic simulation building block in the Simulink environment useful for con-
structing larger dynamical simulations.

We have also derived a lumped parameter model (LPM) from the PTM, and have clearly stated the
underlying assumptions. The LPM has an equivalent circuit with lumped inductance and resistance where
10This coroborates with General Atomics experience on their Urban maglev project.

21



the phase shift between the current and the voltage resembles the phase shift observed in the PTM. The
LPM’s static force formulas versus propulsion velocity have the same shape as the continuous track thin
sheet and high speed approximation.
We show through simulations that, given the right coefficients, the LPM have a very similar behavior as

the PTM, but the main inaccuracy in the LPM arise from the difficulty of determining the coefficients a
priori.
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Quantity Symbol Value Unit
wavelength of Halbach array λ 0.4385 m
wave number of Halbach array k = 2π

λ 14.32 rad/s
width of the Halbach array ws 0.25 m
length of the Halbach array Ls 2*0.4635 m
magnetic source window WJ 2*0.4908 m
force window WF 2*1.052 m
track window W 2*1.551 m
levitated weight m 660 kg
track width w 0.5 m
center spacing between track rungs D 39.26 mm
force offset height from rung center ∆yF 0 mm
flux offset height from rung center ∆yφ 6 mm
flux increase parameter ∆φ 0 mm
sidebar resistance Rb 1.325 µΩ
rung resistance Rr 31.25 µΩ
rung self inductance Lr 0.48 µH
LPM equivalent inductance Leq 0.219 µH
LPM equivalent resistance Req 12.5 µΩ
LPM transition speed vt 3.98 s
LPM force constant G 24*103 -

Table 1: Physical parameters taken from the General Atomics rotating wheel facility.

9 Appendix

9.1 Simulation details

In all PTM simulations the magnetic source was a one-sided, five blocks wide Halbach array with NdFeB
magnets with bar orientation displayed in Figure 8. The two transverse outer blocks had a remnant field
strength of 1.01 Tesla (MEOMAXTM 37) whereas the three transverse center blocks had a remnant field
strength of 1.32 Tesla (NEOMAXTM 48). All magnet blocks were cubes with sides 50mm, and the interspace
between blocks was 4.5 mm. The magnetic field was computed using magnetization sheets as described in
[23],[22].
The PTM was solved in the Simulink environment with a Runge-Kutta 4-5 solver with zero detection, and

the error tolerance was selected based on the propulsion speed. The constant in the force error bound was
ζ = 2.9595 (66). A typical fNF

(t−m) is shown in Figure 6 and is of the order 10
−9. The parasitic damping

αpar and the mechanical damping αm were zero in all simulations. The remaining parameters are given in
Table 1.

9.2 Evaluating the force continuity

We assume that we have included NF = 2NF + 1 currents in our model in accordance with Section 3.5, so
that the neglected currents are {. . . , i−N−2, i−N−1, iN+1, iN+2, . . .}. The force from the included currents is
denoted FNF =

PNF

n=−NF
fn, where fn = (in − in−1) × B is the partial force from rung number n. At each

solver reset instant tm, there is a force continuity error from the removed rear current i−N (t−m) equal to¯̄
FNF (t−m)−FNF (t+m)

¯̄
=
¯̄
fNF (t−m)

¯̄
= sup

t∈[tm,tm+1]

|fNF (t)| , (62)

If we now make the assumptions that all currents outside the force window decay at the rear and grow in
front as in ∼ e±t/τ , τ = Req/Leq, and that the magnetic field outside WF decays as B ∼ e−kx, then the
partial force decays as fn∼e−kx− t/τ away from WF . If we assume constant speed vx in the time interval
[tm, tm+1], we have that t = D/vx. In addition, x = Dn such that the partial force not accounted for in the
PTM is

fNF+n = fNF e
−Dn(k+1/vxτ). (63)
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The error between the force of the ITM and the PTM isX
n∈Z

|m|≤NF

|fn − fm| =
X
n∈Z

|n|>NF

|fn| = 2
∞X

n=NF+1

|fn| , (64)

where the last equality follows from using the current at the rear of the array to approximate those in
front which is reasonable considering Figure 8. Inserting (63) into (64), and summing the geometric series©
e−Dn(k+1/vxτ)

ª
yields

2 |fNF |
∞X
n=1

e−Dn(k+1/vxτ) = ςfNF (t−m), (65)

where the constant ς is defined as

ς , 2
µ

1

1− e−D(k+1/vxτ)
− e−D(k+1/vxτ)

¶
. (66)

Finally, we arrive at the explicit bound on the total force error in the l1 norm as

|F−FNF |l1 ≤ � < ζfNF (t−m), (67)

in terms of the observed force discontinuity fNF (t−m). In other words, by observing fNF (t−m) in a simulation,
we can compute the upper bound on the maximum force error �.
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